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Abstract. We consider the electrostatic interaction between two rigid membranes, with different surface
charge densities of opposite sign, across an aqueous solution without added salt. Exact solutions to the
nonlinear Poisson-Boltzmann equation are obtained and their physical meaning discussed. We also calculate
the electrostatic contribution to the free energy and discuss the renormalization of the area per head group
of the charged lipids arising from the Coulomb interaction.

PACS. 82.65.Dp Thermodynamics of surfaces and interfaces

1 Introduction

Electrostatics often plays an important role in determin-
ing the structure of macromolecules in aqueous solution,
e.g. polyelectrolytes, charged membranes, and charged col-
loidal particles. For many physical systems, where charge
densities on the surfaces are equal and of the same sign,
the Poisson-Boltzmann equation provides quantitative de-
scriptions of their electrostatic interactions [1]. However,
many biological processes involve charge densities on the
surfaces that are not equal and sometimes even have op-
posite sign [2]. Examples of this situation include pro-
tein association with DNA and membranes; the interac-
tion between cationic liposomes and negatively charged
cell membranes [3]. It also has significant biotechnolog-
ical importance for the study of DNA association with
artificial cationic liposomes [4]. In a recent experimental
work on two oppositely charged membranes [5], it is found
that the membrane, due to its fluidity, adjusts its area per
head in response to the electrostatic interaction. Similar
conclusion has been reached by Radler et al. [6] on DNA-
cationic liposome complexes. Motivated by these exper-
iments, in the present paper we study a model of two
oppositely charged membranes in electrostatic interaction
and quantify how the area per head renormalizes by us-
ing the Schulman-Montagne condition [7] for membrane
self-assembly.

We consider a system composed of two oppositely
charged rigid membranes [8] separated by a distance L
across an aqueous solution with dielectric constant ε (see
Fig. 1). One carries positively charged lipids with magni-
tude q per head group and area per head Σ+. The other
membrane is composed of negatively charged lipids of
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Fig. 1. Geometry of the problem: two membranes of unequal
opposite charge, separated by a distance L with counterions
between them.

charge−q with Σ− area per head. Without loss of general-
ity, we assume here that Σ−1

− > Σ−1
+ . We imagine that the

two membranes, each with its own counterions which we
assume to be monovalent, initially infinitely far apart are
brought into the vicinity of each other, where the electro-
static interaction dominates other interactions. Since the
counterions can gain entropy by escaping to infinity, we
only consider the positive counterions that are required to
neutralize the system [9]. We also assume that there is no
salt in the solution in to order to focus on the fundamen-
tal effects of the electrostatic interaction (see Conclusion
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for a discussion of the effects of added salt.) The charged
lipids in the membrane are modeled as a fluid with an
effective surface tension γ, which typically has a value of
∼ 0.04 kBT/Å

2 for bilayers; thus in addition to the elec-
trostatic energy, there is a surface free energy of the form
βFs/N = γ Σ for each membrane, where N is the number
of lipids, β = 1/kBT , T is the temperature, and kB is the
Boltzmann constant. Note that energies are expressed in
units of kBT . We are interested in the values of Σ∗± which
minimize the total free energy – surface and electrostatic
energy – as a function of L and γ.

To illustrate the effect of the electrostatic interaction
on the structure of membranes, let us consider the sim-
plest case in which Σ+ = Σ− = Σ; in this situation there
are no counterions between the charged membranes. The
electrostatic contribution to the free energy can be calcu-
lated using Gauss’ law to give [10]

βFel = N

(
2πlBL

Σ

)
, (1)

where lB ≡ q2/εkBT ≈ 7 Å, is the Bjerrum length for an
aqueous solution of dielectric constant ε = 80 and N is
the total number of lipids in the membrane. Minimizing
Fs + Fel with respect to Σ, we find Σ∗ = (πlBL/γ)1/2.
Hence, the optimal area per head group depends on the
square root of the distance separating the two membranes,
and for a separation of ∼ 10 Å, we find Σ∗ ∼ 75 Å2.
In contrast, the electrostatic free energy for an isolated
charged membrane with its own counterions is given by
[11]

βFel
∼= −2N lnΣ, (2)

to within an additive constant. Therefore, Σ∗ = 2/γ ∼
50 Å2. Thus, the optimal area per molecule with electro-
static interactions may deviate substantially from that of
an isolated charged membrane. Note that while the or-
der of magnitude is the same in both cases, the functional
dependences on the parameters are quite distinct.

In order to take the counterions into account for un-
equally charged membranes, let us suppose that the neg-
atively charged membrane is located at x = 0 and the
positively charged one at x = L. One constraint is that
of charge neutrality – the number of counterions must be
equal to the difference between the number of molecules
on the two membranes:∫ L

0

n(x)dx =
1

Σ−
−

1

Σ+
, (3)

where n(x) is the counterion density which is, in the mean
field approximation, related to the potential φ by the
Boltzmann factor:

n(x) = n0 e−βqφ(x), (4)

where q is the unit of charge and the prefactor n0 is fixed
by equation (3). Combining equation (4) with the Poisson
equation from electrostatics

−∇2φ(x) =
4πq

ε
n(x), (5)

we arrive at the Poisson-Boltzmann (PB) equation:

−
d2ψ

dx2
= 4πlBn0 e−ψ, (6)

where we have defined ψ(x) ≡ β q φ(x).
Equation (6) encapsulates a mean field approach to

the many-body problem. It assumes that the counterions
are point-like and collectively generate an average poten-
tial φ(x) which governs how the counterions are them-
selves distributed. Furthermore, the PB equation, which
neglects correlations among counterions, is valid only for
sufficiently high temperatures or low surface charge den-
sities [1,12]. Therefore, within the mean-field approxima-
tion, our task is to solve the PB equation subject to the
boundary conditions:

dψ

dx

∣∣∣∣
0

= +
4πlB
Σ−

(7)

and

dψ

dx

∣∣∣∣
L

= +
4πlB
Σ+

· (8)

In the next section, we present the solutions to equa-
tion (6) and discuss the equilibrium configurations of the
counterions. In Section 3 we analyze the electrostatic con-
tribution to the free energy and pressure of the system. In
Section 4, the phase diagram of the system is presented
and followed by a discussion of the equilibrium value of
the area per head.

2 Nonlinear Poisson-Boltzmann solutions

Equation (6) can be solved using the “energy” method of
classical mechanics, where we obtain a useful constant of
motion, defined by

E ≡

(
dψ

dx

)2

− 8πlBn0e−ψ(x). (9)

This constant can be physically interpreted as being pro-
portional to the difference between the electrostatic stress
and thermal pressure of the counterions (∼ n(x)kBT ).
There are three cases to consider: i) E > 0, ii) E = 0,
iii) E < 0.

For E > 0, we have for the normalized potential

ψ(x) = ln

[
8πlBn0

E
sinh2

(√
E

2
(x− x′)

)]
(10)

and the counterion distribution

n(x) =
E

8πlB sinh2(
√
E(x−x′)

2 )
· (11)
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We choose the normalized potential to be zero at x = 0.
This determines the value of n0 = n(0). Using the bound-
ary conditions, one can show that the counterion densities
at the surface of the membranes are given by:

n(0) =
2πlB
Σ2
−
−

E

8πlB
(12)

and

n(L) =
2πlB
Σ2

+

−
E

8πlB
, (13)

where E satisfies

E =
(4πlB)2

Σ+Σ−
−

4πlB(Σ+ −Σ−)

Σ+Σ−

√
E coth

√
EL

2
· (14)

For E = 0, we have for the normalized potential

ψ(x) = ln
[
2πlBn0(x− x′)2

]
(15)

and the counterion distribution

n(x) =
1

2πlB
(x− x′)−2. (16)

The boundary conditions determine the value of L:

L =
Σ+ −Σ−

2πlB
· (17)

The density at each surface can be obtained using
equations (12, 13) by setting E = 0.

For E = −E− < 0, we have for the normalized
potential

ψ(x) = ln

[
8πlBn0

E−
cos2

(√
E−

2
(x− x′)

)]
(18)

and counterion density

n(x) =
E−

8πlB
sec2

√
E−(x− x′)

2
· (19)

The boundary conditions give

E− =
4πlB(Σ+ −Σ−)

Σ+Σ−

√
E− cot

√
E−L

2
−

(4πlB)2

Σ+Σ−
·

(20)

Equations (12, 13) are still valid with the replacement
E → −E−.

We observe that for the dilute counterion limit, E > 0,
the equilibrium density distribution is essentially exponen-
tial. However, as the counterion density increases, the col-
lective effect of mutual repulsion of the counterions leads
to a sec2 dependence of the counterion distribution as
shown in Figure 2. Note that even for small separations,
the counterions density is not uniform, in contrast to the
case of electric double layers of like charges.
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Fig. 2. The counterion distribution for the case E < 0 given by
equation (19). It is not uniform for small distance in contrast
to the case of two electric double layers of equal charge density
of the same sign.

3 The electrostatic free energy and pressure

The electrostatic free energy per unit area, which is the
sum of the electrostatic energy and the entropy of the
counterions, can be written as

βfel =

∫ L

0

dx

{
E

8πlB
− n(x) [ψ(x)− ln(n0v0) ]

}
, (21)

up to an additive constant, where v0 is the volume per
counterion. From equation (21) or using a known expres-
sion for the pressure [12],

βP = n(0)− (∇ψ)2/8πlB,

we obtain

P = −
kBT

8πlB
E. (22)

Here we have the simple result that the pressure is propor-
tional to −E. Hence the solutions with E > 0 and E < 0
describe membranes that attract and repel each other, re-
spectively. For the solution of E = 0, the membranes exert
no net force on each other. Figure 3 shows how the pres-
sure varies with the distance. Using equation (17), we can
determine the equilibrium distance L∗:

L∗ =
Σ+ −Σ−

2πlB
·

Therefore, the result in equation (22) leads to the following
picture. For large separation, L > L∗, the counterion con-
centration is dilute and the electrostatic attraction domi-
nates. On the other hand, the counterions are dense when
the separation is small, L < L∗. Hence thermal pressure
dominates. When L = L∗ the electrostatic and thermal
pressure balance, leaving zero net pressure. Similar results
have also been obtained from numerical solutions to the
PB equation for other systems [13]. We note that since
∂2fel/∂L

2
∣∣
L∗

> 0 as suggested in Figure 3, the system is
in a stable equilibrium at L = L∗.
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Fig. 3. A plot of pressure vs. separation distance for the case
of ∆ = 0.1 and Σ+ = 130 Å2 from equation (22).

Upon explicit evaluation of equation (21) and multi-
plying by the area of the membrane, the electrostatic free
energy becomes:

βFel/N+ = −y(z)2z − 2 (∆−1 − 1) ln z

+∆−1 ln
[
1− (∆z y(z))2

]
− ln

[
1− (zy(z))2

]
,

(23)

where y± ≡
√
E±L

2 , z ≡ Σ+

2πlBL
, and ∆ ≡ N+

N−
. The function

y(z) is defined as

y(z) =

y+ if 0 < z < (1−∆)−1

0 z = (1−∆)−1

iy− z > (1−∆)−1 .
(24)

Note also that y(z) 6= 0 satisfies

zy(z) = tanh[y(z)] +∆z y(z) (1− z y(z) tanh[y(z)]) .
(25)

In deriving equation (23), we have made an implicit as-
sumption that the areas of the two membranes are the
same, namely, N+Σ+ = N−Σ−. The validity of this as-
sumption is justified, since the edge effect, which arises
when the areas of the two membranes are different, adds
to equation (23) a correction term of orderO(A−2). There-
fore, in the limit of large surface areas, this contribution
is negligible. Note that this assumption implies that the
ratio ∆ ≡ Σ−/Σ+ is fixed. Physically, the asymmetric pa-
rameter ∆ gives the ratio between the number of particles
in each membrane. Equations (23, 24, 25) are the final re-
sults from which the equilibrium properties are derived in
the next section.

4 Equilibrium properties

In this section, we determine the equilibrium value of Σ+,
using equation (23) for the electrostatic contribution to
the total free energy, which is given by

βFtot/N+ = 2γΣ+ + βFel[L,Σ+;∆]/N+, (26)
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Fig. 4. The phase diagram as determined by equation (28):
α ≡ 4πlBLγ vs. ∆. The region above the line is the attractive
region of the membranes and the region below repulsive.

where γ is the surface tension. Let us first consider the
case in which the system is at equilibrium (P = 0). By
setting y(z) = 0 in equation (23), it can be shown that
the optimal area per head group is given by

Σ∗+ =
∆−1 − 1

γ
, (27)

and the equilibrium distance can be calculated using equa-
tion (17) to give

L∗ = γ−1 (1−∆)2

2πlB∆
· (28)

Note that we must restrict ∆ to the range of 0 ≤ ∆ < 1,
since the case of ∆ = 1 corresponds to zero counterion
density where the membranes attract for all separations.
For the case of ∆ = 0.1, we find Σ∗+ ∼ 200 Å2 and L∗ ∼
5 Å. Therefore, the counterions have yet a stronger effect
on the stretching of the membrane compared to the single
charged membrane case where we have shown Σ ∼ 50 Å2.
According to the discussion of Section 3, equation (28)
represents a line which separates the repulsive region and
the attractive region in the phase diagram, which is shown
in Figure 4.

Next, we consider two membranes separated by a fixed
distance. Equation (23) can be regarded as a function of
only z with the help of equation (24). Thus, we can imag-
ine solving y(z) in terms of z, and by substituting the
result into equation (23), minimization of the free energy
can be carried out explicitly. Unfortunately, this cannot
be done analytically in general. However, our estimate of
L∗ above indicates that for L < L∗, which is of atomic
size, other effects such as thermal fluctuations and van
der Waals attraction that have not been taking into ac-
count, may become significant. Therefore, we focus on the
large separation limit, L� L∗, where y(z)� 1. With this
approximation, we obtain

Σ∗+ '
1

2∆γ

{
1−∆+

(
(1−∆)2 + 4πlB∆

2γL
)1/2}

.

(29)
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Fig. 5. The optimal value of the area per headgroup Σ∗+ as a
function of the charge asymmetric parameter ∆ for L = 10 Å.
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The curves are plots of equation (29) for their respective values
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Here, we observe that Σ∗+ decreases as ∆ → 1 monotoni-
cally as shown in Figure 5. This is a reflection of the fact
that the counterions have a strong effect on the stretch-
ing of the membrane. The presence of the counterions
enhances the electrostatic energy; therefore, lowering of
the charge density is energetically favorable. Hence the
stretching of the membrane. For ∆ = 0.1 and L = 10 Å,
we find Σ∗+ ∼ 250 Å2 which is five times the value of an
isolated charged membrane!

For completeness, we have performed the minimization
of the free energy numerically for physically relevant sep-
arations (L > 2 Å). The results for the cases ∆ = 0.1, 0.5
are shown in Figure 6. We see that equation (29) is indeed
not a bad approximation for large distances. Furthermore,
we observe that Σ∗+ increases monotonically with distance
for all values of ∆, as also suggested by equation (29).
Note that even for L < L∗, Σ∗+ bears the same qualitative
dependence on ∆.

5 Conclusion

In this paper, we have considered two asymmetrically
charged membranes of opposite sign. The counterion dis-

tribution is obtained by solving the PB equation. The
membranes can either attract, repel, or exert no force
on each other, depending on the difference in the area
per head group of the membranes. We have also made an
attempt to understand the collective effects of the coun-
terions on the structure of the membranes. Due to the
electrostatic interaction of the counterions and the mem-
branes, the stretching of the membranes becomes ener-
getically favorable. In the high counterion concentration
limit (∆ � 1) the area per head can reach a value few
times as large as an isolated charged membrane. We note
here that since the volume of a lipid bilayer is fixed, due
to the incompressibility of lipid molecules, the stretching
of the membrane implies a decrease in its thickness. This
effect may be observed in real experimental settings by
e.g. X-ray scattering.

Finally, we wish to comment on the relevance of the
model studied in this paper to other systems. First, for
the case of permeable membranes, where counterions may
freely permeate behind the charged membranes, the elec-
trostatic interaction can be shown to be attractive for
all separations, since the thermal pressure exerted on the
membrane by the counterions is much weaker. In this case,
we have verified that this problem is almost identical to
our model for the solution E > 0. Therefore, the renormal-
ization of area per head group as given by equation (29)
should hold at least qualitatively. Secondly, we also con-
sider the presence of a finite amount of salt in our system.
This problem may be described at the PB level by an
equation similar to equation (6),

−
d2ψ

dx2
= κ2 sinhψ + 4πlBn0 e−ψ,

where κ is the inverse of the screening length. The above
equation can still be solved in principle but involves rather
complicated mathematical functions. This is a subject for
further study. However, it can be inferred that our model
corresponds to the case where the separation between the
membranes is small compared to the screening length, i.e.
L < κ−1. Typically, for κ−1 ∼ 20 Å for 0.05 M of salt, our
model should provide a good picture for the binding of op-
positely charged membranes for a distance of the order of
few Å. For L ≥ κ−1, the electrostatic interaction is expo-
nentially screened. Nevertheless, according to reference [2]
even with a finite amount of salt, the linearized PB theory
also predicts regions of repulsion and attraction between
membranes, similar to what we have found here. There-
fore, we believe our model captures the essential physics
associated with the electrostatic interaction of oppositely
charged membranes.
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